

Unlocking full potential of the biomass:

Producing higher value products by use of new enzymes & smart technologies

Lene Lange

"LL-BioEconomy, Research & Advisory, Denmark"

*Research Partner in Danish, Nordic, EU & Internationally-funded projects
Advisory to the European Commission (CBE, Scientific Committee),
to the Danish Government (Naional Bioeconomy Panel)
and to Nordic Council of Ministries, Icelandic Chairmanship (etc etc)*

Global Focus:

Improved use of biological resources is a necessity

=> Many new types of improved enzymes are needed

Huge opportunities in enzyme-processing, making Value from "Waste":

- **Upgraded use of food waste:** Globally, 34% of all food is wasted!
- **Valorizing food-processing side-streams;** currently >6% extra is wasted; => >40%
- **Improved use of crop residues** –unlocking full potential of entire crop plant
- **Sustainable higher value use of blue biomass, seaweeds & fish cut-offs**
- **Upcycling of residual microbial biomass** from biological production /bacteria & fungi
- **Making value from organic content of sludge and wastes**
- **Upgraded use of fibers from outsorted textiles, for production of new textiles?**

By Cascading use:

Unlocking the full potential of the many types of biomass

- The **Yellow Biomass**: Straw, corn-stover & wood chips
- The **Green Biomass**: Green grass & foliage and stems
- The **Blue Biomass**: Fish processing cut-offs & Seaweeds
- The **Red Biomass**: Slaughterhouse waste, blood & cut-offs
- The **Grey Biomass**: Agro-industrial side streams
- The **Brown Biomass**: Sludge & manure; household waste
- The **Purple** approach: Making feed from methane (Negative Emission Tech)

Lene Lange, Infographics, Creative Commons (The Colors of Biomass & Biorefinery)

Learning from Nature

Fungi can play a prominent role for improved use of global biological resources

- Fungal invasive power enables upgrading of the bioresources, now wasted
- Enzymes, Production host, Single cell proteins
- & Higher value products!

Lene Lange, Infographics, Creative Commons
(Fungal Hall of Fame)

Reference:

Lange L, Agger JW, Meyer AS. Fungal Biotechnology: Unlocking the Full Potential of Fungi for a More Sustainable World.

http://link.springer.com/10.1007/978-3-030-29541-7_1

Higher value products from the pulp-fraction of the Green Biorefinery

- **Gut-health promoting food ingredients with prebiotic effect**
 - By enzyme treatment of the hemicellulose, Xylan-containing polymers, producing Xylo Oligo Saccharides, XOS
 - stimulating the healthy microbiome biodiversity
- **Chloroplast-protein, extracted from the green fibrous pulp**
 - by protease enzyme treatment making e.g. plant-based baby food

Outreach-Reference: Lange, L. et al., 2016. The Fundamentals of Bioeconomy for a Biobased Society. United Federation of Danish Workers 3F (available in 8 European languages).
<https://backend.orbit.dtu.dk/ws/portalfiles/portal/140638164/>

Higher value products from the Blue biorefinery

Pharma and health products from fish skin & from shrimp shell processing

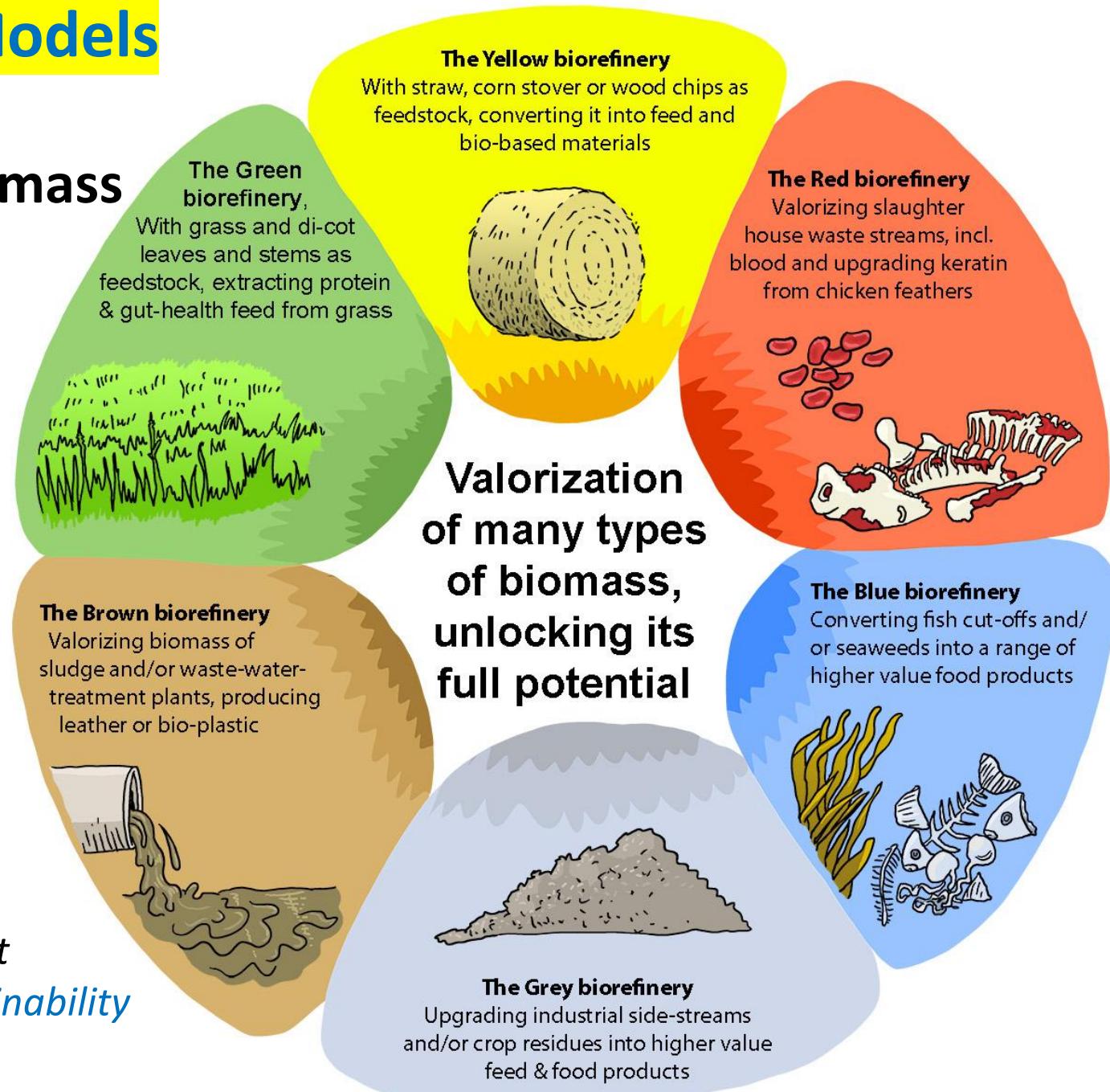
- Wound healing (Penzyme, Enzymatica)
- Common Cold (Coldzyme, Enzymatica)
- Collagen (Codland, Iceland)
- **Pharma/wound healing compounds, pigments & enzymes from seaweeds**
 - Prophylaxis and treatment of Age-inferred eye-disease, MDA
 - A Fucoidan-based product
- **Reference:** Lange, L. et al., 2021. The Blue Bioeconomy. United Federation of Danish Workers 3F (available in English, Danish and Icelandic; Greek in prep).

Higher value products from the Red Biorefinery

- Pharma product, blood-based
 - for treatment of iron-deficiency in women and children
- New Enzymes, discovery and use
- High quality proteins for food and feed from poultry
 - Circular use of clean slaughterhouse sidestreams
 - -now OK for poultry waste (no BSE!)

References: Espersen R, Huang Y, Falco FC, Hägglund P, Gernaey KV, Lange L, et al. 2021. Exceptionally rich keratinolytic enzyme profile found in the rare actinomycetes *Amycolatopsis keratiniphila* D2T. *Appl Microbiol Biotechnol.* 105(21):8129–38. Lange L, Huang Y, Busk PK. Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. *Appl Microbiol Biotechnol.* 2016, 100(5):2083–96

Higher value products from cereal food-processing side-streams


- **Deliciousness** can be the new driver of climate friendly food:
 - By specific enzyme treatments and gourmet processing*:
 - Upgrading cereal bran to Umami-flavored Sauce or Umami-flavored Bouillon
 - For enrichment of taste of plant-based food
- Speed up, making **The green choice = The preferred choice!**

** Made by "Amass R&D", in collaboration with "LL-BioEconomy"*

Bio-based Business Models

For Upgraded use of the many types of biomass

*To implement producing
also high-value products
we need many new
and improved enzymes!*

Technologies for improved Enzyme Discovery: **Developing Peptide-based Functional Annotation**

- New technologies, described by analysis of genome sequenced fungi
- Notably, all technologies also applicable for other types of organisms (bacteria, plants, animals etc)

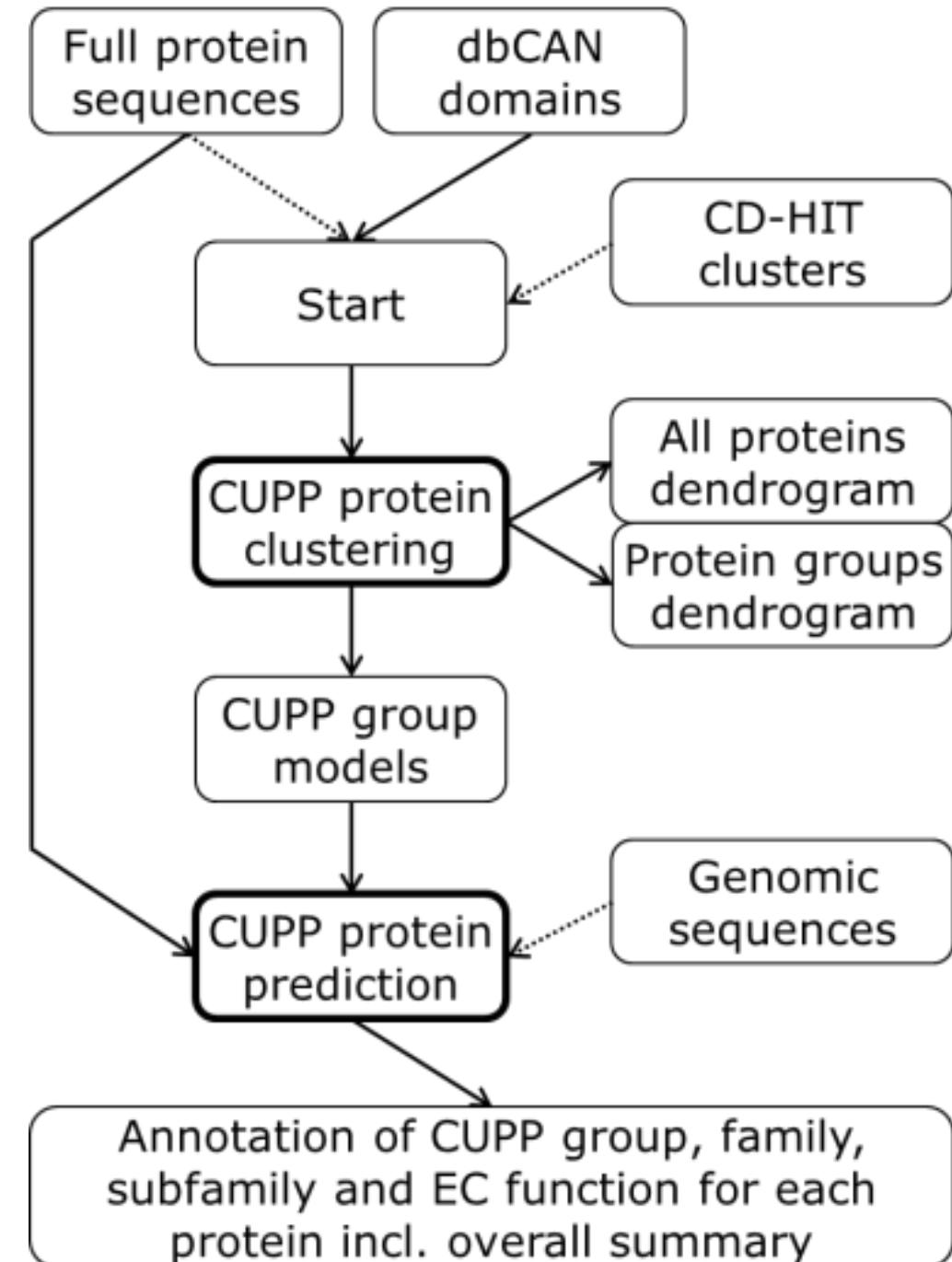
Functional annotation by CUPP, Conserved, Unique Peptide Patterns

CUPP for CAZymes:

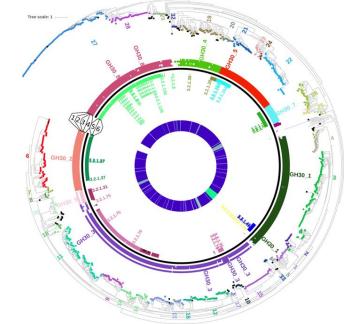
Consists of two stages,

Clustering & Function Prediction

Barrett & Lange*, 2019

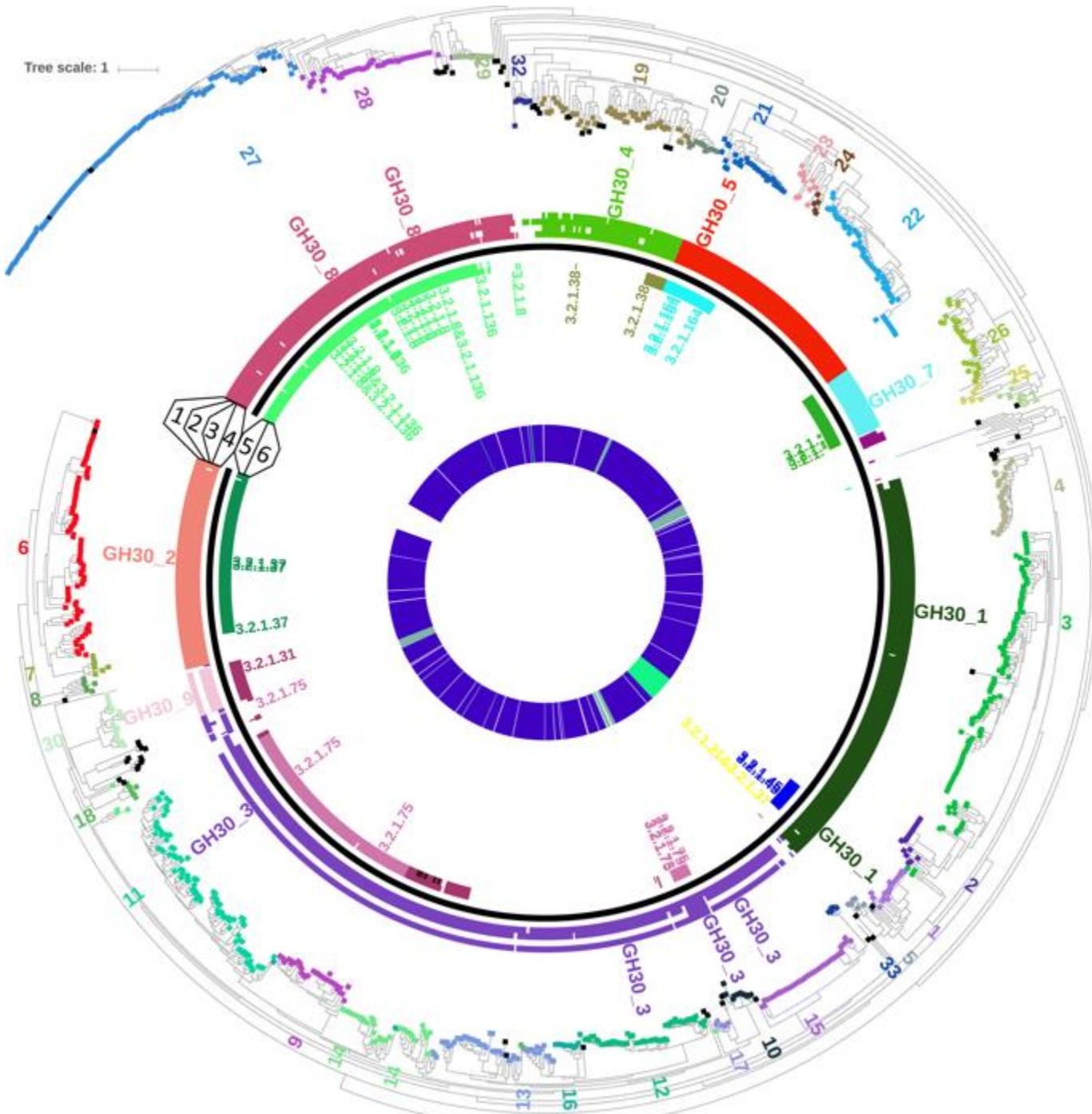

in Biotech f Biofuel:

CUPP, Peptide-based Functional annotation


Barrett et al., 2020

CUPP as Online functional annotation platform.

Nucleic Acid Research, 48, p110-115 **TRY IT!**



Validation of CUPP functional annotation (ex: CAZyme Family GH30)

- In general, each CAZy Family holds several enzyme functions
- CUPP groups represent a lower level division than CAZyme Families/Subfamilies
- Members of a CUPP group have same EC Function (or share other function-relevant features)
- CUPP-prediction of function optimizes use of data/information:
Prediction of function possible, if just one member of a CUPP group has been characterized

CUPP validation on GH30: Case, all proteins belonging to glycohydrolase family GH30

Grouping proteins of CAZy Family GH30 into Families & SubFamilies

Surrounding dendrogram indicates division of Subfamilies into CUPP-Groups

GH30_5: GH30, Sub-family 5 is divided into CUPP- Groups 21-24

*Prediction of
function possible, if
just one member of
a CUPP group has
been characterized*

Improvements of peptide-based functional annotation -from PPR/HotPep to CUPP (*now an online web-based tool*)

CUPP:

- All groups formed simultaneously=> Gr#1 no longer disproportionately large
- CUPP Group numbers conserved; allowing comparing results over time
- Using Unique peptide patterns for each CAZyme CUPP group –no overlap
- Improved Sensitivity and Precision in Prediction of Function
- Basic principle covered by same, open-access patent (Busk & Lange)
- CUPP available as automated online platform <https://cupp.info/>

- **Busk, PK & Lange, L, 2013:** Function-Based Classification of Carbohydrate-Active Enzymes by Recognition of Short, Conserved Peptide Motifs. *Appl Environ Microbiol.* 79: 3380–3391
- **Barrett, K & Lange, L, 2019:** Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). *Biotechnology for biofuels* 12 (1), 1-21. **CUPP method, description and validation**
- **Barrett, K et al., 2020:** Conserved unique peptide patterns (CUPP) online platform: peptide-based functional annotation of carbohydrate active enzymes, *Nucleic Acids Research*, 48, p110-115. **Try it! It is online!**

CUPP for enzyme discovery

- elucidating secretome evolution

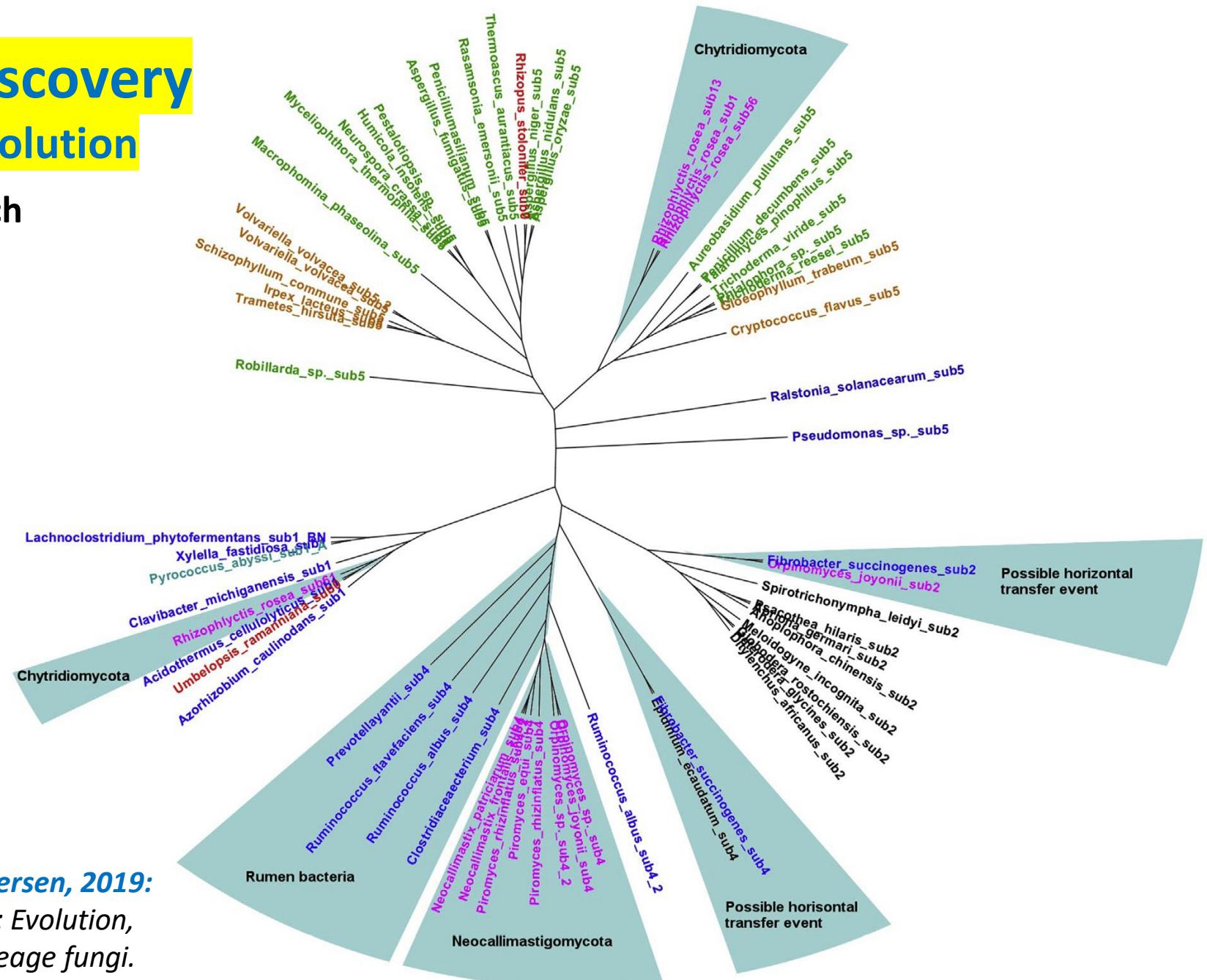
**Ancient zoosporic fungi have rich secretome and unique enzymes
Case endo-glucanase GH5,
Phylogenetic tree:**

Ascomycota

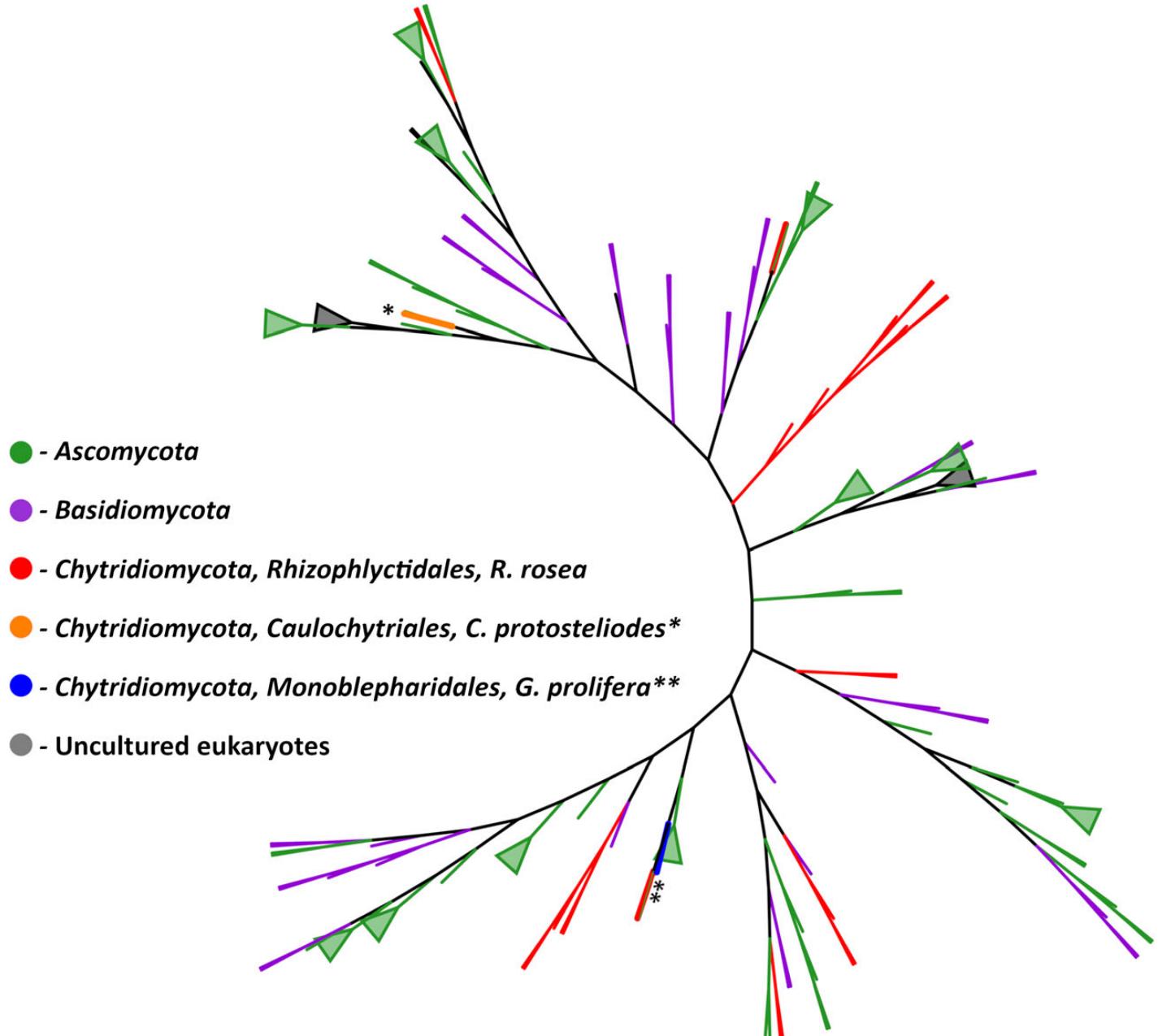
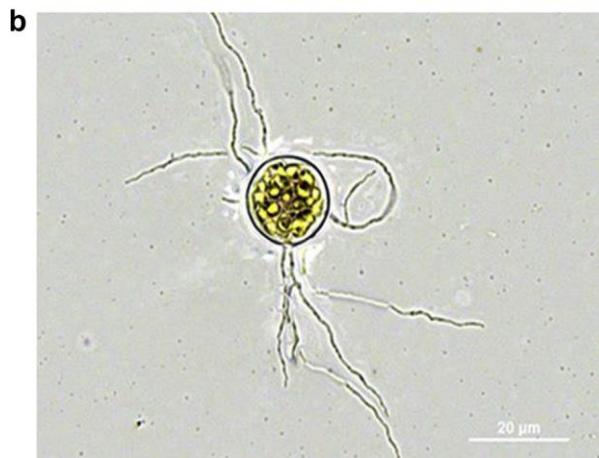
Basidiomycota

*Chytridiomycota -all over!

Zygomycota


Bacteria

Archaea



Plants

Animals

Lange, Pilgaard, Herbst, Busk, Gleason, Pedersen, 2019
Origin of fungal biomass degrading enzymes: Evolution, diversity and function of enzymes of early lineage fungi.
Fungal Biology Reviews, 33: 82-97

Phylogenetic tree, fungal AA9:
Zoosporic, *Rhizophlyctis rosea* a
soil chytrid, has rich and unique
diversity of AA9 LPMOs (cellulose)

New: CUPP-based secretome-annotation for enzyme discovery

Basic principle of functional secretome annotation:

Integrate Protein-Family & EC-Function into one "Function;Family Observation" "F;F"

Secretome composition of "F;F" is the target for Evolutionary pressure & selection:

- Fitness: Having the needed types of digestive functions in right types of proteins
 - *Protein structure determines substrate accessibility, stability, pH- and temperature- tolerance and optimum (etc)*

Annotated "Function;Family" profiles mimick evolutionary fitness:

- Optimized secretome mobilizes the substrate efficiently, hereby giving basis for fitness in growth and reproduction

Barrett, Jensen, Meyer, Frisvad*, Lange*, 2020: Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example *Aspergillus* and *Penicillium*. *Scientific Reports*

EPR-Hypothesis:

Similarity in "F;F" annotated secretome profiles matches phylogenetic relatedness of the producing organisms

Enzyme profile relatedness (EPR) can be found by binary comparison of "F;F" composition

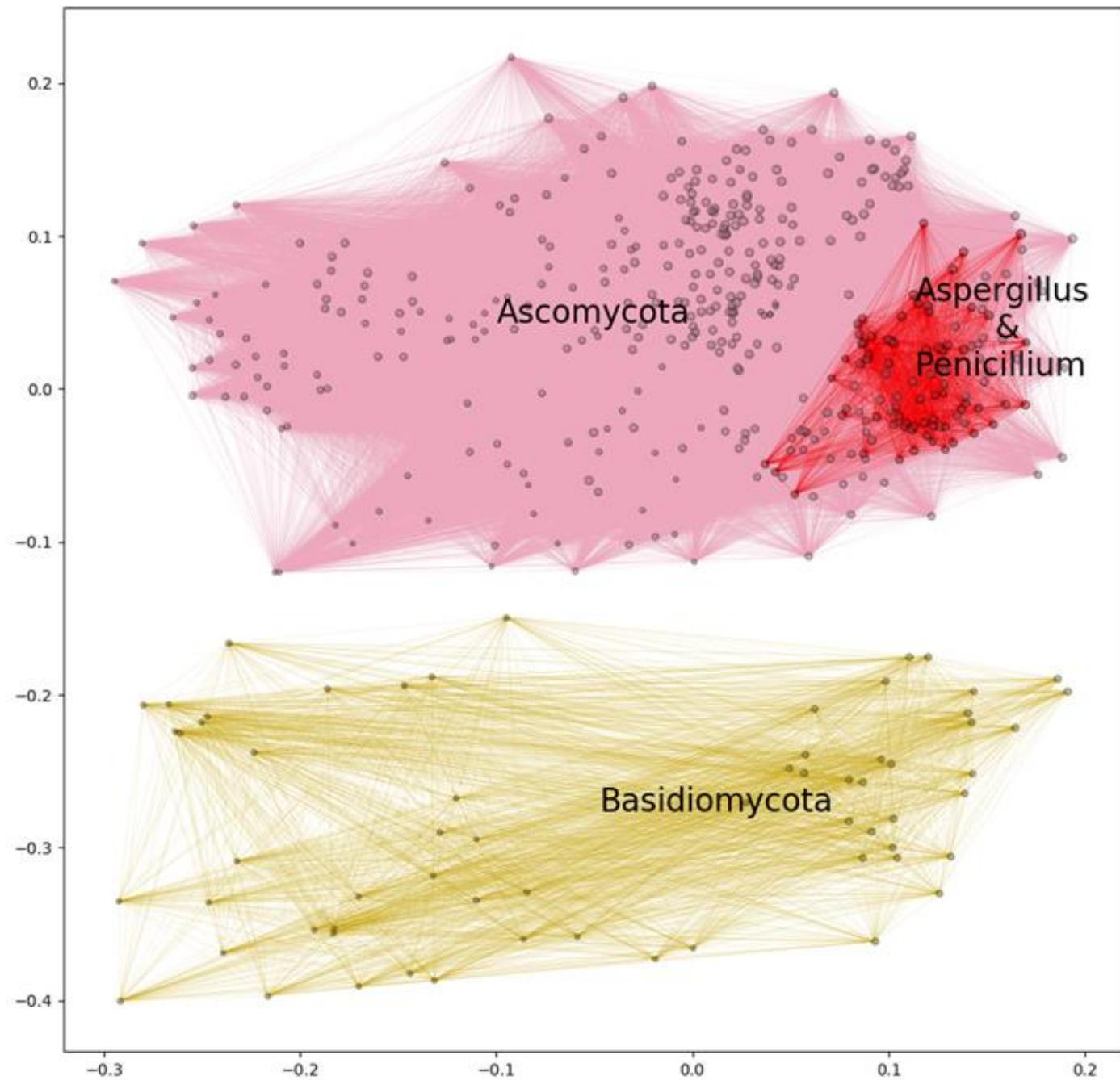
Validation model:

All available genome sequenced *Aspergillus* and *Penicillium*

- Testing by Jacquard calculation: Did not confirm hypothesis!
- Testing by Yule distance calculation confirmed the hypothesis!
 - *Yule* gives equal weight to F;F observations shared & F;F observations shared NOT having (presence and absence)

Barrett, Jensen, Meyer, Frisvad, Lange*, 2020: Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium. Scientific Reports*

Enzyme Profile Relatedness-based clustering of genomes across Fungal Kingdom


By Multi-Dimensional-Scaling:

*Distinct separation of Asco-
from Basidiomycota!

*Distinct clustering of
Aspergillus- & Penicillium spp

Barrett, Jensen, Meyer, Frisvad, & Lange, 2020:

Fungal secretome profile categorization of CAZymes
by function and family corresponds to fungal
phylogeny and taxonomy: Sci Rep 10, 5158

Testing Hypothesis: EPR-clustering of all species of *Penicillium* and *Aspergillus* (=molds)

Integrating:

- *Functional genomics
- EPR dendrogram /center
- *Organismal phylogeny
- *Interaction-phenotype
(substrate affinity=icons)

Result:

Complete match of EPR
to division of species of
the two fungal genera
into Sections

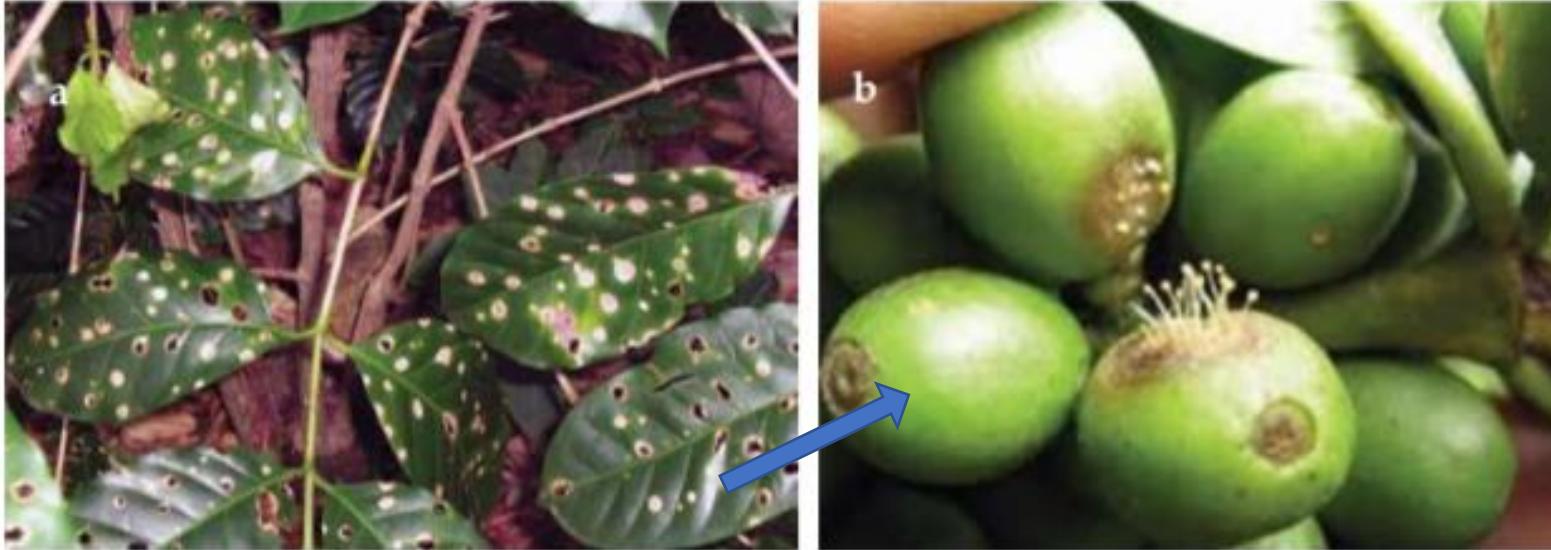
NEW: Fungal Kingdom analysis, finding the Enzyme "Hotspots"

Basic principle: Summing up number of "F;F" observations!

- Summing up "F:F" observations per species, allows for ranking of all Fungal Kingdom genome sequenced species (~2.000), according to:
 - Richness in CAZyme function-specificity diversity (only unique "F;F" obs.)
 - Total degrading capacity (incl redundant "F;F" obs.)
- Analyzing for fungal CAZyme Hotspots identifies:
 - Fungal species "richest & poorest" in cellulolytic, xylanolytic, pectinolytic & ligninolytic enzyme potential
- The fungal enzyme Hotspots are found in very different types of fungi:
 - Many surprises: e.g. hot spots found among endophytes and stone-fungi
 - Strongest degrading capacity: in zoosporic rumen fungi

Lange, L.; Barrett, K.; Meyer, A.S., 2021: New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences. J. Fungi 7, 207

Hot Spot analysis, example


10 top-scoring fungal species, ranked by pectin-degrading capacity

D Ranking: Pectin	Taxonomy			Target Substrate of Encoded CAZymes				
	Species	Class	Phylum	Cellulose	Pectin	Xylan	Lignin	Total
<i>Mycena citricolor</i>	Agaricomycetes	Basidiomycota	91	204	50	149	494	
<i>Verticillium longisporum</i>	Sordariomycetes	Ascomycota	139	176	74	95	484	
<i>Paramyrothecium roridum</i>	Sordariomycetes	Ascomycota	106	163	63	79	411	
<i>Colletotrichum truncatum</i>	Sordariomycetes	Ascomycota	90	150	59	72	371	
<i>Colletotrichum camelliae</i>	Sordariomycetes	Ascomycota	90	139	65	77	371	
<i>Colletotrichum</i> sp. COLG25	Sordariomycetes	Ascomycota	90	139	63	76	368	
<i>Colletotrichum karsti</i>	Sordariomycetes	Ascomycota	90	139	57	71	357	
<i>Colletotrichum tropicale</i>	Sordariomycetes	Ascomycota	89	139	63	77	368	
<i>Cadophora</i> sp. DSE1049	Leotiomycetes	Ascomycota	105	138	75	91	409	
<i>Aspergillus latus</i>	Eurotiomycetes	Ascomycota	95	137	53	58	343	

Lange, L, Barrett, K, & Meyer, AS, 2021: New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences. *J. Fungi* 7, 207

Mycena citricolor, (Agaricales, Basidiomycota)

-a Hot Spot for pectin degrading CAZymes

***Mycena citricolor* attack on coffee plants, leaves and fruits, illustrates massive degradation of plant tissue, creating holes in the leaves and sinking in parts of the berries**

Photo, courtesy of Andrew Dominick, University of Wisconsin-La Crosse

Conclusions

- Combining **CUPP, EPR & HotSpot** =>function-targeted enzyme-profiling & discovery
- Digestive enzyme secretome is an integrated part of speciation
 - *Secretome composition congruent with separation into Sections of Aspergillus & Penicillium*
- Ranking of enzyme capacity: similarities between cellulose- & xylan-active enzymes
- Diversity of enzyme function specificity richest for pectin-active enzymes
- Horizontal Gene Transfer appears to be frequent among aquatic, zoosporic fungi
- No AA enzymes/LPMOs found in rumen fungi. No lignin-active?
- EPR of digestive secretomes can give new input to analysis of complex genera
- **Applied potential:**
 - **“Hotspot” opens for optimized conversion blends xylan, pectin and lignin**
 - **AA3’s of unknown functions, prominent in digestive secretome composition!**

Next steps, Optimizing development of Higher Value biobased products

Expand CUPP, "F;F", EPR, Hot Spot (and soon also blend composition):

to cover a broader spectrum of enzymes:

- AA's, Esterases, Transferases, and Lyases
- Use all this in synergy with the new Alpha fold 3D finder
 - –a fantastic break through – a paradigm shift!

Expand functional annotation to cover also:

- Proteases and Lipases
- For this improved enzyme curation is needed

Notably: Strengthening EU Research Support efforts are needed! -JGI, BGI

Closing remark:

“Circular & Bio-based food”, (from residues & side-streams etc) represents a huge opportunity for *Food security & Climate, Nutrition & Health, Biodiversity & Jobs!*

For this we need many new and improved enzymes:

Enzyme discovery for improved enzyme processing is KEY for valorizing the huge amount of biomass going wasted or downgraded

Thanks a lot for your attention

Lene

